Part Number Hot Search : 
74ACT ZVN4525Z MB90439S SEL2415E BCR8KM 20K15 FC810 RD33UM
Product Description
Full Text Search
 

To Download IRF7805ZGPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 07/10/09 IRF7805ZGPBF hexfet   power mosfet notes   through  are on page 10 benefits  very low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  100% tested for rg top view 8 1 2 3 4 5 6 7 d d d d g s a s s a so-8 v dss r ds(on) max qg (typ.) 30v 6.8m @v gs = 10v 18nc applications  high frequency point-of-load synchronous buck converter for applications in networking & computing systems.  lead-free  halogen-free  absolute maximum ratings parameter units v ds drain-to-source voltage v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation  p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead  ??? 20 r ja junction-to-ambient  ??? 50 c/w v w c max. 16 12 120 20 30 -55 to + 150 2.5 0.02 1.6

 2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.023 ??? v/c r ds(on) static drain-to-source on-resistance ??? 5.5 6.8 m ? ??? 7.0 8.7 v gs(th) gate threshold voltage 1.35 ??? 2.25 v ? v gs(th) gate threshold voltage coefficient ??? - 4.7 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 64 ??? ??? s q g total gate charge ??? 18 27 q gs1 pre-vth gate-to-source charge ??? 4.7 ??? q gs2 post-vth gate-to-source charge ??? 1.6 ??? nc q gd gate-to-drain charge ??? 6.2 ??? q godr gate charge overdrive ??? 5.5 ??? see fig. 16 q sw switch char g e (q gs2 + q gd ) ??? 7.8 ??? q oss output charge ??? 10 ??? nc r g gate resistance ??? 1.0 2.1 ? t d(on) turn-on delay time ??? 11 ??? t r rise time ??? 10 ??? t d(off) turn-off delay time ??? 14 ??? ns t f fall time ??? 3.7 ??? c iss input capacitance ??? 2080 ??? c oss output capacitance ??? 480 ??? pf c rss reverse transfer capacitance ??? 220 ??? avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent  a diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 3.1 (body diode) a i sm pulsed source current ??? ??? 120 ( bod y diode )  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 29 44 ns q rr reverse recovery charge ??? 20 30 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) conditions max. 72 12 ? = 1.0mhz conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 16a  mosfet symbol v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 13a  v gs = 4.5v typ. ??? v ds = v gs , i d = 250a clamped inductive load v ds = 15v, i d = 12a v ds = 24v, v gs = 0v, t j = 125c ??? i d = 12a v gs = 0v v ds = 15v

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 2.5 3.0 3.5 4.0 4.5 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 16a v gs = 10v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c    
      
     0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 150c    
      
    

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 10203040 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 12a 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 1.0 10.0 100.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 t j , junction temperature (c) 0 4 8 12 16 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 1.081 0.000437 12.880 0.213428 24.191 2.335 11.862 52

 6 www.irf.com fig 13c. maximum avalanche energy vs. drain current 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.0a 6.9a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 12. on-resistance vs. gate voltage 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 0.00 0.01 0.02 0.03 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 125c

 www.irf.com 7 d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16. gate charge test circuit fig 15. 
 



   for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   fig 17. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr

 8 www.irf.com control fet  

   

     
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic

 www.irf.com 9 so-8 package outline (mosfet & fetky)         

  



 



 
  



 
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

    


    !"
  ##
  $%$ ! ! !   $$ & !   dimensions are shown in milimeters (inches) so-8 part marking information note: for the most current drawing please refer to ir website at http://www.irf.com/package/ 

 
 


 
    
     

   
       
    

 10 www.irf.com 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.94mh r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board   
   1 
  data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualifications standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2009 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel dimensions are shown in millimeters (inches) note: for the most current drawing please refer to ir website at http://www.irf.com/package


▲Up To Search▲   

 
Price & Availability of IRF7805ZGPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X